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We extend the analysis of a mean-field model for biaxial liquid crystals recently proposed by Sonnet et al.
�Phys. Rev. E 67, 061701 �2003��. In particular, we perform a bifurcation analysis of the equilibrium equations
and derive the complete phase diagram. We show that two order parameters suffice to label all equilibrium
phases, though they exhibit different bifurcation patterns. A Monte Carlo simulation study is performed as well,
confirming qualitatively the predictions of this analysis.
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I. INTRODUCTION

In the last few years great interest has been paid to biaxial
nematic liquid crystals, both experimentally and theoretically
�1�. Stable biaxial phases have been observed in lyotropic
systems as early as 1980 �2�. Since 1986 there have been a
number of reports of thermotropic biaxiality in low-
molecular weight compounds �3–6�. Recently, Madsen et al.
�7� and Acharya et al. �8,9� reported the detection of a biaxial
nematic phase in thermotropic liquid crystals composed of
bow-shaped molecules. Moreover, biaxiality has also been
discovered in polymeric systems �10�.

More recently, Merkel et al. �11� observed experimental
evidence of biaxiality in two different mesogenic molecular
tetrapodes. These molecules, which exhibit biaxiality close
to room temperature, provided the first quantitative observa-
tion for this class of liquid crystals. In an individual tetra-
pode, four rodlike molecules are connected to a siloxane core
through four siloxane spacers, leading to a macromolecule
having a platelet shape. This structure hampers the rotation
of each rodlike constituent around its long axis, thus promot-
ing biaxiality of the resulting phase.

Over the past 30 years, the possible effect of molecular
biaxiality on nematic order has been studied theoretically.
Molecular field models �12–23� and, later, simulation studies
of lattice models �24–28�, have shown that single-component
models consisting of molecules possessing D2h symmetry
�platelets�, and interacting by appropriately chosen poten-
tials, can produce biaxial phases. A similar scenario has
emerged from the analytical study of systems of biaxial mol-
ecules interacting via hard-core potentials �29�, supported by
simulation results �30�. In these works a second-order
uniaxial-to-biaxial phase transition is found and a mostly sin-
gular direct isotropic-to-biaxial transition is predicted as
well. However, a different scenario arises in Ref. �23�, where
the authors consider a particular model within the general

expression of Straley’s pair potential �15� and predict a range
of parameters where a direct first-order transition occurs be-
tween biaxial and isotropic phases. Moreover, they predict
biaxial-to-uniaxial transitions of both second- and first order,
thus finding a tricritical point in the phase diagram. These
results have also been confirmed by Monte Carlo studies
�31�. The experimental findings of Merkel et al. �11� were
interpreted within this theoretical setting and confirmed the
existence of a tricritical point.

Here, we further pursue the study of the model proposed
in Ref. �23� and confirm the existence of yet another tricriti-
cal point, now on the isotropic-to-biaxial transition line, al-
ready predicted in Ref. �32�.

This paper is organized as follows. In Sec. II, we present
the pair potential. In Secs. III and IV we perform a complete
bifurcation analysis of the mean-field equations. Finally, in
Sec. V we support the mean-field predictions with a Monte
Carlo simulation. The main outcomes of the paper and the
further questions it poses are summarized in Sec. VI.

II. INTERMOLECULAR POTENTIAL

In a recent work �23�, a biaxial mesogenic interaction
model has been proposed. It elaborates on Straley’s general
intermolecular potential, written in the form

V = − U0�q · q� + ��q · b� + q� · b� + ��b · b��� , �1�

where the pairs of tensors �q ,b� and �q� ,b�� represent the
interacting molecules. The tensor q is purely uniaxial around
the unit vector m in the direction of the long molecular axis,
while b, orthogonal to q, is purely biaxial

q ª m � m −
1

3
I ,

b ª e � e − e� � e�. �2�

Here, the orthonormal basis �e ,e� ,m� is the eigenframe of
any molecular polarizability tensor, and so q and b represent
the irreducible components of the anisotropic part of any
such tensor.
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A generalization of Eq. �1� can be written as

V = ��̃�q · q�� + �̃�q · b� + q� · b� + �̃�b · b��� . �3�

Let U0ªmax���̃� , ��̃� , ��̃��. Upon scaling the parameters �̃, �̃,

and �̃ to U0, Eq. �3� becomes

V = − U0���q · q�� + ��q · b� + q� · b� + ��b · b��� , �4�

where �, �, � are not greater than 1 in magnitude, and at least
one of them equals 1 in magnitude; the case in Eq. �1� is
recovered by choosing �=1.

It can easily be checked that, apart from an additional
constant, the potentials in Eqs. �1� and �3� can also be given
as symmetrized linear combinations involving squares of the
nine different inner products between the vectors of the or-
thonormal basis �e ,e� ,m� and its analog �e� ,e�� ,m��. With
the aid of some elementary geometric identities, it can actu-
ally be shown that any symmetrized linear combination of
the named squared inner products reduces to a “diagonal”
form, only involving the three squared inner products be-
tween corresponding unit vectors �31�; in formulas

V = − U0�− 	� +
�

3

 + �� − ���m · m��2 + 2�� + ���e�� · e��2

+ 2�� − ���e� · e�2� , �5�

or, equivalently

V = ��− �P2�m · m�� + 2��P2�e� · e� − P2�e�� · e���

− ��2P2�e�� · e�� + 2P2�e� · e� − P2�m · m���� , �6�

where �ª 2
3U0 and P2�x�ª 1

2 �3x2−1� is the second Legendre
polynomial.

Moreover, we are considering here molecules possessing
D2h symmetry: there are three mutually orthogonal
mirror planes inducing inversion symmetry through their
intersection. The expression in Eq. �5� clearly reflects the
invariance of the intermolecular potential under this group.
As a consequence, V can be written as a linear combination
of symmetry-adapted functions �sk��̂��k=1,. . .,4 �see, e.g.,
Refs. �26,27,29,31�� in the notation of Ref. �31�, where

�̂= ��̂ , �̂ , �̂� denotes the triplet of Euler angles �33–35� de-
fining the orientation of one molecule relative to the other

V��̂� = − ���s1��̂� + �6��s2��̂� + s3��̂�� + 6�s4��̂�� , �7�

where

s1��̂� = P2�cos �̂� ,

s2��̂� =
�6

4
sin2 �̂ cos 2�̂ ,

s3��̂� =
�6

4
sin2 �̂ cos 2�̂ ,

s4��̂� =
1

4
�1 + cos2 �̂�cos 2�̂ cos 2�̂ −

1

2
cos �̂ sin 2�̂ sin 2�̂ .

�8�

The notation in Eq. �6� has the advantage of easing compari-
son with the well-known and extensively studied Lebwohl-
Lasher or Maier-Saupe P2 potential, to which it reduces
when �=�=0. Thus, the parameters � and � introduce dif-
ferent perturbations to this model. Simulation results suggest
that the condition �=0, ��0 entails absence of biaxial order
�24�.

Various specific parametrizations have been proposed
and studied for V in Eq. �6�: one of them is based on an
approximate mapping from a hard-parallelepiped model
�15�; another, more often studied one �16,18–22,24–28,36�,
is �=�2; this can also be obtained by starting from a disper-
sion model à la London–de Boer–Heller approximation
�37,38� and isotropically averaging over the orientation of
the intermolecular vector �see, e.g., Refs. �16,20��; the fully
anisotropic biaxial mesogenic dispersion model, also involv-
ing inner products of the molecular unit vectors �e ,e� ,m�
and �e� ,e�� ,m�� with the intermolecular unit vector has been
studied as well, both for three- and two-dimensional lattices
�36,39�.

The development of Ref. �23� started with the parametri-
zation in Eq. �1� and it explored the existence and �mechani-
cal� stability of a biaxial ground state. It then went on to
study the simplified case �=0. The stability analysis was
performed by considering the variation 	V of V for nearly
parallel molecules

	V =
U0

2

2�4�wm

2 + �1 − 2� + ��we
2 + �1 + 2� + ��w�

2 �

+ O�
2� , �9�

where 
 is the angle of rotation that changes the relative
orientation of two interacting molecules around the axis
w�S2 represented by

w = wee + w�e� + wmm . �10�

The stability requirement that 	V�0 is equivalent to
the inequalities ��0 and 2����1+�; moreover, the condi-
tion that the ground state be calamitic, that is, with the
m axis harder to be disoriented than the other two, entails
2����1−3�. If we set �=0, this condition restricts � to the
interval 0���

1
3 . When �=0, the quadratic form �9� has

two degenerate eigenvalues whose eigenspace is the plane
spanned by �e ,e��; for ��

1
3 , the degenerate eigenvalues are

smaller than the eigenvalue associated with m, and so, for
��

1
3 , the planes orthogonal to m and m� are harder to dis-

orient than all others, and this in turn promotes alignment
between m and m�. Thus, when �=0, for either 0
�


1
3 and

��
1
3 , the interaction potential in Eq. �5� promotes molecular

alignment, albeit with apparently different mechanisms. This
observation has motivated our extension of the analysis in
Ref. �23� to the case ��

1
3 .
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The simplified model with �=0 reveals a special symme-
try property: the potential is invariant under � /2 rotations
about m and m� in the individual molecular frames. More
precisely, consider the rotation

R = I + W + W2, �11�

where W is the skew-symmetric tensor associated with m

W = e � e� − e� � e . �12�

Imagine now the same rotation, but acting on the primed
molecule. In the intrinsic frame of the molecule, it is repre-
sented by

R� = I + W� + W�2, �13�

where

W� = e� � e�� − e�� � e�. �14�

The transformed molecular tensors are then

q* = RqRT = q, b* = RbRT = − b , �15�

q�* = R�q�R�T = q�, b�* = R�b�R�T = − b�, �16�

and it can be shown from Eq. �1� that

V�q*,b*,q�*,b�*� = V�q,b,q�,b�� ⇔ � = 0. �17�

Thus, the special model �=0 can be characterized by this
symmetry, which is often referred to as the D4h symmetry.
Moreover, this special model possesses further symmetries.
It can be shown that, for �= 1

3 , V is also invariant under � /2
rotations about e and e�, and under � /2 rotations about e�

and e�� in the individual molecular frames. These rotations
are associated with the following skew-symmetric tensors:

We = e� � m − m � e�, We� = e�� � m� − m� � e�� ,

W� = m � e − e � m, W�� = m� � e� − e� � m�.

�18�

The corresponding invariant pair potential takes the special
form

V = −
2

3
U0��m · m��2 + �e · e��2 + �e� · e�� �2 − 1� . �19�

In the following sections we shall explore the conse-
quences of these pairwise potential symmetries over the or-
der parameters’ manifold and over the equilibrium phases.

III. MEAN-FIELD TREATMENT

In this section, starting from the potential in Eq. �4� with
�=1 and �=0, we build our mean-field theory. We consider
an ensemble of biaxial molecules, within which the orienta-
tion of each molecule is specified with respect to a fixed
reference frame �ex ,ey ,ez� via a triplet of Euler angles
�= �� ,� ,�� such that �23�

e = �cos � cos � cos � − sin � sin ��ex

+ �cos � sin � cos � + sin � cos ��ey − cos � sin �ez,

e� = − �sin � cos � cos � + cos � sin ��ex

− �sin � sin � cos � − cos � cos ��ey + sin � sin �ez,

m = cos � sin �ex + sin � sin �ey + cos �ez. �20�

The liquid crystal phase is described by the order parameters
introduced by Straley �15�, which also represent the two in-
dependent second-rank order tensors �23� defined as en-
semble averages of q and b

Q ª 
q� = S	ez � ez −
1

3
I
 + T�ex � ex − ey � ey� , �21�

B ª 
b� = S�	ez � ez −
1

3
I
 + T��ex � ex − ey � ey� .

�22�

Alternatively, the order parameters �S ,T ,S� ,T�� can be
given as ensemble averages of the symmetry-adapted func-
tions sk�� ,� ,��

S = 
s1���� , T =�2

3

s2���� ,

S� = �6
s3���� , T� = 2
s4���� . �23�

In this approximation, the pair potential is replaced by the
pseudopotential �see, e.g., Refs. �16,17� and Refs.
�26,27,29,31��

���,�,�� = − U0� , �24�

where

� = �
jk=1

4

djk
sj�sk = q · Q + �b · B , �25�

and the matrix D, with entries djk, is diagonal

�D� =�
2

3
0 0 0

0
4

3
0 0

0 0 4� 0

0 0 0 8�

� . �26�

The Boltzmann distribution function then reads as

f ª
1

Z
exp����, Z ª �

T
exp����d� , �27�

where �ªU0 /kBt, kB is the Boltzmann constant, t is the
absolute temperature, and Z is the partition function, in
whose definition T denotes a toroidal manifold parametrized
by the Euler angles �� ,� ,�� and d�ªsin �d�d�d� is
the area measure on it. Accordingly, the mean-field free
energy is
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F�S,T,S�,T�;�,��

= U0�1

3
S2 + T2 +

1

3
�S�2 + �T�2 −

1

�
ln	 Z

8�2
�
= U0� 1

2 �
jk=1

4

djk
sj�
sk� −
1

�
ln	 Z

8�2
� . �28�

As a consequence, four consistency conditions arise for the
order parameters �S ,T ,S� ,T��:

S =
1

Z
�

T
s1 exp����d� , �29�

T =�2

3

1

Z
�

T
s2 exp����d� , �30�

S� =
�6

Z
�

T
s3 exp����d� , �31�

T� =
2

Z
�

T
s4 exp����d� , �32�

which also express the stationarity conditions for the free
energy F.

It follows from Eqs. �29�–�32� and the definitions in Eq.
�8� that the order parameters are subject to the following
bounds:

−
1

2

 S 
 1, −

1

3
�1 − S� 
 T 


1

3
�1 − S� ,

− �1 − S� 
 S� 
 �1 − S�, − 1 
 T� 
 1. �33�

A rather telling geometric interpretation can be given for
these bounds: the state manifold M can be represented as the
Cartesian product W� �−1,1�, where W is the wedge in the
�S ,T ,S�� space defined by inequalities �33�. Figure 1 shows
the triangular base of W in the �S ,T� plane. The vertices of
this triangle represent the fully positive-ordered uniaxial
states along the axis of the reference frame; the medians
correspond to partially negative-ordered uniaxial states, with
the isotropic state in their common intersection; any other
point in the triangle represents a phase biaxial state, in the
sense explained in Ref. �23�. Of course, each vertex repre-

sents the same uniaxial state, oriented along one of the three
reference axes.

This equivalence property is indeed more general, as it
applies to all inner points of the triangle: all points conju-
gated relative to one and the same median represent the same
state with a different orientation. As a consequence, the
states represented by the shaded region in Fig. 1 cover all
possible �S ,T� states of the system. Clearly, the symmetry
transformations thus illustrated in the �S ,T� plane act accord-
ingly in the �S� ,T�� plane; formally, they are described by
the mappings

�S,T,S�,T�� � �S,− T,S�,− T�� ,

�S,T,S�,T�� � 	±3T − S

2
,
T ± S

2
,
±3T� − S�

2
,
T� ± S�

2

 .

�34�

These transformations and all their combinations leave F
invariant. Moreover, the D4h symmetry of the pair-potential
V in the special case �=1, �=0 implies a further symmetry
for the order parameters: since the transformation
�q ,b�� �q ,−b� leaves V unchanged, so does the transforma-
tion �Q ,B�� �Q ,−B� with F, as the distribution function f
inherits the invariance properties of the pair potential. In
terms of the order parameters �S ,T ,S� ,T��, this transforma-
tion becomes

�S,T,S�,T�� � �S,T,− S�,− T�� , �35�

and, by composition with the first of �34�, it induces a further
symmetry transformation

�S,T,S�,T�� � �S,− T,− S�,T�� . �36�

Like �34�, both �35� and �36� also leave F invariant. All these
symmetry transformations for the order parameters have pro-
found consequences on the bifurcation analysis of the mean-
field theory, which we present in the following section.

IV. BIFURCATION ANALYSIS

By performing a bifurcation analysis of the compatibility
equations �29�–�32�, we explore the mean-field model for
all values of the parameter ��

1
3 , beyond the bound consid-

ered in Ref. �23� and in Ref. �31�. These equations transform
equivariantly with respect to the symmetry transformations
�34�–�36�, which realize a Z2-symmetry set of operators.
In particular, these symmetry transformations are linear
functions acting on the state vector p= �S ,T ,S� ,T��T in
M�R4 and are represented by the following four involution
operators:

FIG. 1. �S ,T�-plane projection of the state manifold M.
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�O1,2� =�
−

1

2
±

3

2
0 0

±
1

2

1

2
0 0

0 0 −
1

2
±

3

2

0 0 ±
1

2

1

2

� ,

�O3� =�
1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 − 1
� , �37�

�O4� =�
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 1
� ,

such that Oi=Oi
−1 for i=1,2 ,3 ,4. We write the compatibility

equations �29�–�32� in the form

p = g�p,�,�� , �38�

where g is the R4-valued function representing the right-hand
sides of these equations. The Z2 equivariance of these equa-
tions under Oi means that

g�Oip,�,�� = Oig�p,�,�� ∀ ��,��, i = 1,2,3,4. �39�

Since each operator Oi is an involution, it possesses eigen-
values +1 and −1, and so it induces a decomposition of R4,
the ambient of the state manifold M, into a symmetric sub-
manifold where

Oip = p , �40�

and an antisymmetric submanifold where

Oip = − p . �41�

As explained above �see Fig. 1�, the operators O1, O2, and
O3 realize only a reparametrization of the states, while the
additional symmetry O4 combined with O3 makes the states
�S ,0 ,0 ,0� special solutions, since they represent the com-
mon symmetric states with respect to both these operators
and to their product O3O4, which is a Z2-operator as well.
Actually such states represent the classical Maier-Saupe
model �40�, which is recovered in our setting for �=0. Thus,
for �=0, the Maier-Saupe solution is a solution for all �.
This solution satisfies the following equation:

S =

�
0

�

s1���exp�2

3
�Ss1����sin �d�

�
0

�

exp�2

3
�Ss1����sin �d�

, �42�

which includes the isotropic state �0,0,0,0� as a special solu-
tion. The isotropic phase is locally unstable for ���*= 15

2 .

We denote by S0��� the nonzero solution of �42�, which ex-
ists in the range ���*�6.73.

When �=0, it has long been known that for ���c
�6.81, a first-order transition occurs from the isotropic
phase, which establishes a uniaxial state with S=S0���.
When ��0, further equilibrium states can be established by
breaking the symmetry of the uniaxial state. In the formal
language introduced in Refs. �41,42�, the Z2 operators O3 and
O4 are responsible for such a breaking, so that a branch of
equilibrium solutions bifurcates in each relevant antisymmet-
ric submanifold of M. The symmetry-breaking bifurcation
lines in the �� ,�� plane can be expressed in the analytical
forms

�S���� =
4

2�1 − S0����� − 3
, �43�

and

�T���� =
24

2�5 + 7S0����� − 3
, �44�

corresponding to the solutions of the extended system asso-
ciated with the symmetry decomposition induced by the op-
erators O4 and O3, respectively �the interested reader is re-
ferred to Chap. VI of Ref. �41� and Chap. 8 of Ref. �43� for
the technical details of this terminology�.

Numerical computations show two bifurcation branches
emanating from the Maier-Saupe curve when � is not too
large; upon further increasing �, the two bifurcating branches
are completely wrapped around it �Fig. 2�. For small values

FIG. 2. Order parameter S versus � for different values of � in
the range �0, 1

3
�, contrasted with the Maier-Saupe solution S0���,

whence all graphs start. Here, �*= 15
2 . As � increases, these

branches progressively retract away from the Maier-Saupe curve.
The stable solutions with the least free energy correspond to the
thick solid lines on the branches bifurcating from the positive side
of the curve S0���: they are associated with the order parameter T�
depicted in Fig. 3. The dashed branches bifurcating from the nega-
tive side of the curve S0��� are unstable solutions associated with
the order parameter S�. The point F represents the transition point,
while the point L represents the limit of stability, marked here only
on one curve, to avoid clutter.
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of �, one of these branches breaks the symmetry in T�, it
keeps T=S�=0 �Figs. 2 and 3�, and requires � to exceed �T�
in �44�; the other branch breaks the symmetry in S�, it keeps
T=T�=0 �Figs. 2 and 4�, and requires � to exceed �S� in
�43�. The solution with T��0 has S�0 and represents a
biaxial phase. The solution with S��0 has S�0 and repre-
sents a uniaxial phase since T=T�=0. This uniaxial phase is
always locally unstable, and so no bifurcation occurs when
�=�S����. The biaxial phase with T��0 is locally stable, at
least for small values of �, and so a bifurcation with ex-
change of stability occurs when �=�T����. A second-order
phase transition then establishes a biaxial macroscopic order-
ing. First-order phase transitions are also possible when � is
increased �23�.

For an assigned value of �, a first-order transition occurs
wherever the free energy of the condensed phase is equal to
the free energy of the isotropic phase, which is zero, so that
the compatibility equations �29�–�32� are solved together
with the equation

F�S,T,S�,T�;�,�� = 0. �45�

A first-order transition line is a collection of all solutions of
this extended system.

In Figs. 2–4, thick solid lines represent phases with the
least free energy, thin solid lines represent locally stable
phases, and dashed lines represent locally unstable phases. L

FIG. 3. Order parameter T� versus � for different values of � in
the range �0, 1

3
�. These curves correspond to the dominant solutions

bifurcating from the positive side of the curve S0��� in Fig. 2. F and
L denote the corresponding transition point and limit of stability.

FIG. 4. Order parameter S� versus � for different values of � in
the range �0, 1

3
�. These curves correspond to the unstable solutions

bifurcating from the negative side of the curve S0��� in Fig. 2.

FIG. 5. Order parameter S versus � for �= 1
3 , 1

2 , 2
3 . Two branches

bifurcate from the isotropic state: the one with S�0 is locally un-
stable �dashed lines�, while the one with S�0 becomes stable be-
yond the limit of stability L �thin solid lines�. For �= 1

3 , the two
branches bifurcate at �*= 15

2 ; for �= 1
2 and �= 2

3 , they bifurcate at
�=5 and �= 15

4 , respectively. F marks the point at which the first-
order transition takes place �and solid lines thicken�. All other sec-
ondary bifurcating branches are unstable.

FIG. 6. Order parameter T� versus � for �= 1
3 , 1

2 , 2
3 . Two sym-

metric branches bifurcate from the isotropic state: they are both
associated with the positively ordered solutions in Fig. 5. All
branches bifurcate backwards in � and are locally stable past the
limit of stability L, while the first-order biaxial transition takes
place at the point F. For �= 1

3 , the tangent at the bifurcation point is
oblique, whereas it is vertical for the other values of �. For �= 1

3 ,
the two branches bifurcate at �*= 15

2 ; for �= 1
2 and �= 2

3 , they bifur-
cate at �=5 and �= 15

4 , respectively.
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denotes a limit point �limit of stability� where stable and
unstable branches meet. F denotes a first-order transition
point, where an ordered phase, either uniaxial or biaxial, at-
tains less free energy than the isotropic phase.

It is shown in Fig. 3 how upon increasing � in the range
�0, 1

3
�, the biaxial branch starts bifurcating backwards, losing

its stability in the vicinity of the bifurcation point. This is the
manifestation of a tricritical point, where the uniaxial-to-
biaxial transition changes from second- to first order �23�.
Another tricritical point was recently predicted for this
mean-field model along the isotropic-to-biaxial transition,
which is expected to be first order for ��

17
21 and second

order for ��
17
21 �32�. This prediction is now further explored

within the present bifurcation analysis.
The symmetry-breaking bifurcation line associated with

the operator O3O4 at the isotropic solution is

�S�,T���� =
5

2�
. �46�

For ��
1
3 , the critical value of � delivered by Eq. �46� is

smaller than �*= 15
2 , and the ordered solutions bifurcate from

the isotropic state away from the classical Maier-Saupe so-
lution. The bifurcation scenario evolves as depicted in Figs.
5–7, which represent the variety of equilibrium solutions for
S, T�, and S�. Both branches in T� and S� bifurcate from the
same point in Eq. �46�. The graphs for T are not reproduced
here because T is negligible at all primary bifurcations. As
shown in Fig. 5, two branches emanate from the isotropic
state at �=5/2�: the one with S�0 is always locally un-
stable, while the other becomes stable beyond the limit point.
Two S� branches are also associated with the negatively or-
dered solutions: they are both unstable �see Fig. 7�. Similarly,
two symmetric T� branches are associated with the positively
ordered solution: they both bifurcate backwards in � and are
locally stable only past a limit point. A first-order transition

FIG. 7. Order parameter S� versus � for �= 1
3 , 1

2 , 2
3 . Symmetric

unstable branches emanate from the isotropic state, associated with
the negatively ordered solution in Fig. 5.

FIG. 8. Order parameter S versus � for �= 5
6 ,1. Two branches

bifurcate from S=0: one positive and stable and the other negative
and unstable. A second-order phase transition occurs: here, both the
limit of stability and the transition point coalesce into the bifurca-
tion point. For �= 5

6 , the bifurcation occurs at �=3, while for
�=1, it occurs at �= 5

2 . Here, �*= 15
2 .

FIG. 9. Order parameter T� versus � for �= 5
6 ,1. Two symmetric

stable branches bifurcate at the same value of � as S in Fig. 8: they
both correspond to the positively ordered state S�0.

FIG. 10. Order parameter S� versus � for �= 5
6 ,1. Two symmet-

ric unstable branches emanate from S�=0, corresponding to the
negatively ordered state S�0 in Fig. 8.
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occurs involving jumps of both S and T� from zero onto the
stable bifurcated branches: correspondingly, the system un-
dergoes a first-order isotropic-to-biaxial phase transition. For
completeness, Figs. 5–7, also exhibit all secondary bifurca-
tion branches we found with the continuation method em-
ployed here �the pseudo-arclength continuation �44��: they
all emanate from solutions that are either unstable or with
higher free energy.

By continuing in � the bifurcation analysis of the equilib-
rium equations, we found that the scenario illustrated by
Figs. 5–7 stays qualitatively unchanged up to �= 17

21, thus
showing the persistence of a direct isotropic-to-biaxial first-
order transition.

Above the tricritical point at �= 17
21, the bifurcation sce-

nario yet changes again. Figures 8–10 show the order param-
eters S, T�, and S� at equilibrium. Two branches bifurcate
from S=0 in Fig. 8, one positive and the other negative: the
former is stable, while the latter is unstable. This bifurcation
occurs for � below �*, and the Maier-Saupe curve, still rep-
resented in Fig. 8, is completely overshadowed by the early
primary bifurcations. Two symmetric S� branches are associ-
ated with the negatively ordered nematic phase, but they are
both unstable, as is the parent S branch �see Fig. 8�; thus,
S�=0 for all stable equilibrium solutions. Correspondingly,

FIG. 11. Order parameter T� versus order parameter S for
�= 1

3 , 1
2 , 2

3 , 5
6 ,1. For �= 1

3 , the two order parameters are identical, as
a result of the symmetry enjoyed there by the interaction potential
V. Both the limit point L and the first-order transition point F are
marked on the lines where they do not coincide with the bifurcation
point.

FIG. 12. Phase diagram �thick black lines� and stability diagram
�gray lines� showing the reduced temperature 1/� versus the inter-
action parameter �. Solid thick black lines mark all first-order phase
transitions; the dashed thick black lines mark all second-order tran-
sitions. C1 and C2 are the two tricritical points, M is the common
intersection of the symmetry-breaking lines in Eqs. �43�, �44�, and
�46� �represented here as dashed thin lines, wherever differing from
second-order transition lines�. Triangles represent Monte Carlo
�MC� results, and squares mark the corresponding mean-field pre-
dictions. The results obtained in Ref. �31� for �= 3

10 are displayed
here together with the results obtained in this study for 1

3 , 1
2 , 2

3 , 5
6 ,

and 1. �See also Tables I and II.�

FIG. 13. Simulation results for short-range order parameter �L,j,
obtained for �=1 and with the largest sample size l=30. Discrete
symbols have the following meanings: diamonds: �2,1; crosses:
�2,3; stars: �4,1; asterisks: �4,3.

FIG. 14. Simulation results for the configurational heat capacity
for �=1; the discrete symbols correspond to different sample sizes,
and have the following meanings: circles: l=10; squares: l=20;
triangles: l=30. The associated statistical errors, not shown, range
between 1% and 5%.
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T� has two symmetric stable branches bifurcating at the same
value of � as S. Thus, at �= 17

21 the isotropic-to-biaxial tran-
sition becomes second order and it remains so for all larger
values of �.

Still two order parameters, S and T�, one pertaining to Q
and the other to B, suffice to describe the whole variety of
stable equilibrium phases. They are plotted together in Fig.
11 for ��

1
3 . They become identical for �= 1

3 , as a conse-
quence of the special symmetry property enjoyed by V in Eq.
�19�.

A numerical continuation analysis �43� also allowed us to
construct the phase diagram of this mean-field model, which
is represented in Fig. 12 in the �� ,1 /�� plane. In this figure,
the symmetry-breaking bifurcation lines defined by Eqs.
�43�, �44�, and �46� appear as dashed thin lines, all passing
through the point M. The dashed thick line joining the origin
and the tricritical point C1 is the second-order uniaxial-to-
biaxial transition line: it is part of the line represented by Eq.
�44�. The dashed thick line starting at C2 is the second-order

isotropic-to-biaxial transition line. The solid thick lines rep-
resent first-order transitions: those already found in Ref. �23�
for ��

1
3 along with those found here for ��

1
3 between the

two tricritical points. These lines were found by continuing
in � the solutions of the extended system consisting in the
equilibrium equations and condition �45�. For completeness,
we also represent in Fig. 12 the limits of stability �gray thick
line�, obtained by continuing in � the limit of stability on the
biaxial branches �S ,0 ,0 ,T��.

V. MONTE CARLO SIMULATIONS

In addition to the above “global” mean-field treatment, for
assigned values of the potential parameter �, one can nu-
merically solve the consistency equations and minimize the
mean-field free energy over a fine temperature grid, and thus
calculate the temperature dependence for the resulting ther-
modynamic and structural properties. This procedure was
used for a few selected values of �, and the mean-field analy-

FIG. 15. Simulation results for the order parameters S= 
P2�
= 
s1� for �=1, obtained with different sample sizes; same meaning
of symbols as in Fig. 14.

FIG. 16. Simulation results for the order parameter T�=2
s4� for
�=1, obtained with different sample sizes; same meaning of sym-
bols as in Fig. 14.

FIG. 17. Simulation results for the fourth-rank order parameter

P4� for �=1, obtained with different sample sizes; same meaning
of symbols as in Fig. 14.

FIG. 18. Simulation results for the order parameter S� for �=1,
obtained with different sample sizes; same meaning of symbols as
in Fig. 14.
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sis was supplemented by and compared with Monte Carlo
simulation results, obtained for lattice models defined by the
same � values �the corresponding lattice models, for short�.
More precisely, we consider a three-dimensional simple-
cubic lattice Z3 whose axes define the orthonormal basis
�ex ,ey ,ez�. To each site �, with coordinate vector x�, we
associate a particle center of mass; the interaction potential V
is restricted to nearest neighbors, involving molecules or
sites labeled by � and �, respectively. Molecular orientations
are specified via orthonormal triplets of three-component
vectors, say �e� ,e�� ,m�� for the molecule on the site � and
�e� ,e�� ,m�� for the molecule sited in �. The interaction po-
tential is

V = ��− P2�m� · m�� − ��2P2�e�� · e��� + 2P2�e� · e��

− P2�m� · m���� , �47�

where �= 2
3U0.

Allowing for a lattice situation, the mean-field formalism
changes by appropriate numerical factors, as follows. Since
each molecule interacts with its 6 nearest neighbors, the
pseudopotential �24� is replaced by the following:

�̃ = 2�� = − 2�U0� , �48�

where 2�=6 is the coordination number for the simple-cubic
lattice. Accordingly, the free energy becomes

F̃ = U0�� �
jk=1

4

djk
sj�
sk� −
1

�
ln	 Z̃

8�2
� , �49�

Z̃ = �
T

exp�2����d� .

As a consequence, in actual simulations we used a tempera-
ture scale T* which differs from 1/� by a factor of 9; this
value results from the coordination number used for MC
simulations, as well as from an energy scale of the micro-
scopic potential differing from the one used in the preceding
sections by a factor of 3

2 �in turn, this was chosen so as to
enforce a better compatibility with the Lebwohl-Lasher
model�; thus, the following mapping exists between the tem-
perature scales:

T* =
kBt

�
= 9	 1

�

 , �50�

and simulation results were eventually converted to the 1/�
scale for comparisons. The value �= 3

10 had been investigated
in Ref. �31�, and the following ones were investigated here:
1
3 , 1

2 , 2
3 , 5

6 , and 1. Let us recall that the above mean-field
analysis predicts the existence of a direct isotropic-to-biaxial
phase transition for 0.22��
1 �see also Ref. �23��, being of
first order up to �= 17

21 �0.8095, and of second order for
higher �. Simulations were carried on a periodically repeated
cubic sample, consisting of N= l3 particles, l=10,20,30; cal-
culations were run in cascade, in order of increasing tem-
perature; each cycle �or sweep� consisted of 2N MC steps,
including a sublattice sweep �50�; the finest temperature step
used was �T*=0.0005, in the transition region.

TABLE I. Mean-field estimates for transitional properties, obtained with different values of � �see Figs.
5, 6, 8, and 9�. Blank lines correspond to second-order transitions, where order parameters and �UMF

* are
zero.

� � 1
�

�
MF,tr �UMF

* S T� 
P4�

3
10 0.1618 0.2136 0.5967 0.5624 0.2395
1
3

0.1711 0.2275 0.5842 0.5842 0.2282
1
2

0.2180 0.2426 0.4726 0.5798 0.1443
2
3

0.2716 0.1816 0.2967 0.4780 0.0566
5
6

1
3

1 2
5

TABLE II. MC estimates for transitional properties, obtained with different values of �, and based on the
largest investigated sample size l=30; simulation results for �= 3

10 have been taken from Ref. �31�. Blank
lines correspond to second-order transitions, where order parameters and �U* are zero.

� � 1
�

�
MC,tr �U* S T� 
P4�

3
10 0.1471±0.0001 0.083±0.004 0.435±0.016 0.38±0.02 0.103±0.008
1
3

0.1548±0.0001 0.093±0.004 0.42±0.01 0.414±0.012 0.094±0.005
1
2

0.1948±0.0001 0.063±0.009 0.362±0.012 0.282±0.012 0.032±0.004
2
3

0.238±0.001
5
6

0.281±0.001

1 0.323±0.001
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Equilibration runs took between 25 000 and
200 000 cycles, and production runs took between 200 000
and 800 000; macrostep averages for evaluating statistical
errors were taken over 1000 cycles. Calculated thermody-
namic quantities include mean potential energy per site U*

�where the asterisk means scaling by �� and configurational
specific heat per particle C* �where the asterisk means scal-
ing by kB�.

The order parameters �S ,T ,S� ,T�� were obtained by av-
eraging the four symmetry-adapted functions sk �45–49�

S = 
s1�, T =�2

3

s2�, S� = �6
s3�, T� = 2
s4�;

�51�

they were calculated by analyzing a configuration every
cycle, according to methodologies discussed in detail by
other authors �26,30,47,48�; the four quantities 
sk� are all
different from zero in a biaxial phase �although 
s3� and 
s2�
may be rather small�, while both 
s2� and 
s4� vanish in a
uniaxial phase �47–49�. MC estimates of the fourth-rank or-
der parameter 
P4� were determined as well �47–49,51,52�.

We also evaluated the so-called short-range order param-
eters �47,48�

�L,1 = 
PL�e� · e���, �L,2 = 
PL�e�� · e���� , �52�

�L,3 = 
PL�m� · m���, L = 2,4,

measuring correlations between corresponding pairs of unit
vectors e�, e��, m�, and e�, e��, m�, associated with nearest-
neighbor molecules; the functional form of the interaction
entails that the potential energy U* is a linear combination of
quantities �2,1, �2,2, and �2,3; here, the condition �=0 entails
�L,1=�L,2; moreover, when �= 1

3 , �L,1=�L,2=�L,3.
Simulation results for the specific value �=1 are reported

and contrasted in the following figures. For �= 1
3 , 1

2 , 2
3 , and 5

6 ,
MC results for several observables in the transition region
are plotted in Ref. �53�. Transitional properties for all exam-
ined values of � are collected and compared in Tables I and
II; simulation results for �= 3

10 , 1
3 , 1

2 point to a first-order tran-
sition, whose character seems to weaken with increasing �;
on the other hand, simulation results for �= 2

3 , 5
6 ,1 suggest a

second-order transition. Upon analyzing the simulation re-
sults for the largest sample as discussed in Refs. �54,55�, we
propose estimates for transitional properties as collected in
Table II.

A. The case �=1

The mean-field transition temperature for �=1 was found
to be �1/��MF,tr= 2

5 from Eq. �46�; here, potential energy UMF
*

UMF
* = −

1

2

�̃� , �53�

and order parameters vanish continuously; in this case, mean
field predicts both 
s3� and 
s2� to be practically zero even in
the biaxial phase, as found also in Ref. �23�.

Simulation results for various properties are collected in
Figs. 13–19. Observables such as �L,j �and hence the poten-

tial energy U*��2,1� exhibit a gradual and monotonic
change with temperature, and a very weak sample size de-
pendency, so that only results obtained for the largest
sample-size l=30 are plotted in Fig. 13; notice that in this
case the term P2�m� ·m�� does not appear in the pair poten-
tial, yet �L,3�0, i.e., the parallelizing interaction between
the two other pairs of unit vectors enforces correlations be-
tween the third pair.

Results for C* �Fig. 14� exhibit a more recognizable
sample-size dependency, and show a peak at 1 /��0.322.

Results for the order parameters are shown in Figs.
15–19; S, T�, and 
P4� �Figs. 15–17� appear to decrease
monotonically with temperature, whereas the other two order
parameters T and S� �Figs. 18 and 19� increase up to a maxi-
mum at 1/��0.317 and then decrease; all the order param-
eters appear to evolve with temperature in a gradual and
continuous way, and, for 1 /��0.322, all of them exhibit a
pronounced decrease with increasing sample sizes.

Based on the above results, we propose a direct biaxial-
to-isotropic continuous transition, and the value �1/��MC,tr

=0.323±0.001 for the transition temperature; the estimated
uncertainty is based on the temperature step used in the in-
vestigated range, and the ratio �1/��MC,tr / �1/��MF,tr is 0.808.

VI. CONCLUSIONS

As far as models go, mean field shows that the simplified
interaction with �=0 in Eq. �1� is a biaxial mesogenic po-
tential; upon increasing � there is first a two-transition re-
gime �biaxial-to-uniaxial and then uniaxial-to-isotropic�,
where the biaxial-to-uniaxial transition is first second order
and then first order; for larger values of � only the direct
biaxial-to-isotropic transition survives, being first order, and
then, for larger �, second order.

Two tricritical points, C1 and C2, have been determined;
in particular, C2, the one predicted in Ref. �32�, was con-
firmed by a bifurcation analysis, which showed how C1 and
C2 are joined by a first-order transition line, very close to the
limit of stability. MC simulations carried out on the corre-

FIG. 19. Simulation results for the order parameter T for �=1,
obtained with different sample sizes; same meaning of symbols as
in Fig. 14.
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sponding three-dimensional lattice models for �
= 1

3 , 1
2 , 2

3 , 5
6 ,1 qualitatively confirm this picture. More pre-

cisely, simulations suggest that already for �= 2
3 the direct

isotropic-to-biaxial transition is second order, thus effec-
tively reducing the span of the first-order transition expected
between the points C1 and C2. This is perhaps the most strik-
ing difference between the model studied here, for which �
=0, and the one for which �=��, already explored in depth
in the literature both within the mean-field approximation
�18� and through computer simulation �27�: the direct
isotropic-to-biaxial transition that for the latter model takes
place at a singular Landau triple point happens for the former
along a whole set of the interaction parameter �, and—
depending on �—can be either first- or second order.

In a sense, the present potential models cry for extensions
to the case ��0; work along these lines has been started,
and will be reported in due course.
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